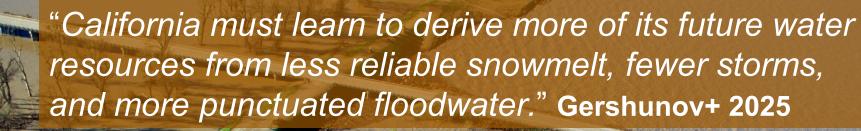


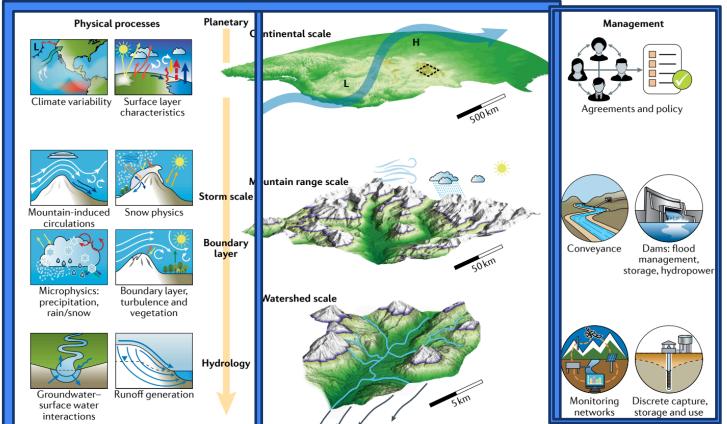
Atmospheric Rivers and Floods in California's Changing Hydroclimate


Presented by: Benjamin Hatchett, Colorado State University Benjamin.Hatchett@colostate.edu

Alexander Gershunov¹, Benjamin Hatchett², Alexander Weyant¹, Michael Dettinger¹, Lu Su¹, Alan Rhoades³, Park Williams⁴, Michael Anderson⁵, Pamela Rittelmeyer⁶, Dennis Lettenmayer⁴, Daniel Cayan¹, Rosa Luna Niño¹, Kristen Guirguis¹, Tom Corringham¹, Romain Maendly⁵, F. Martin Ralph¹

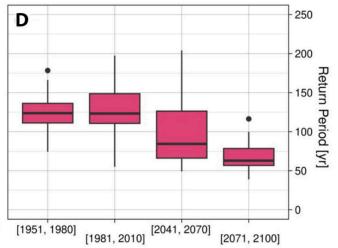
25 November 2024

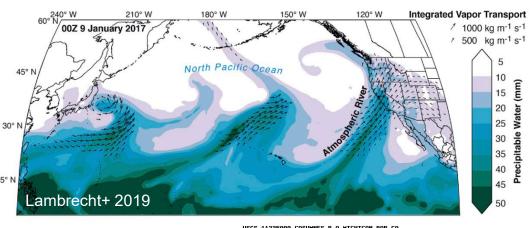
Nick Shockey / California Department of Water Resources



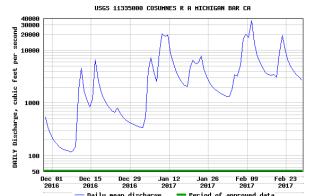
This need exists amongst background warming and drying, aging infrastructure, many management objectives, and assorted uncertainties.

It is a consistent result from individual efforts and broader syntheses through time (e.g., CCCA4 vs. CCCA5).


- Where we're at Directions we can go


Major Modeling Improvements: Physics, Resolution, and Tactics (Storylines)

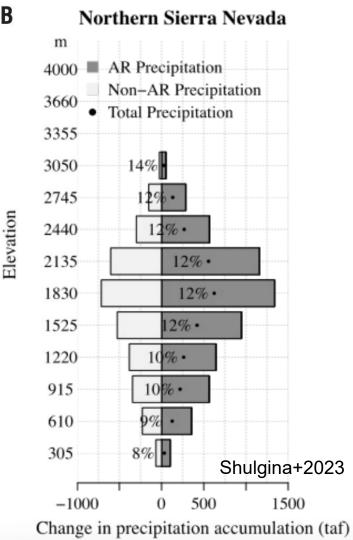
1) Expect **fewer but more intense storms**, potentially with greater **clustering** → (generally) **increased runoff**


Approximate **doubling in likelihood** of 1997 storm total precip (14 models; Gershunov+ 2025)

Sequential storm events (e.g., 1997, 2021, 2017 and 2023) most problematic (e.g., Haleakala+ 2022; Rhoades+ 2023)

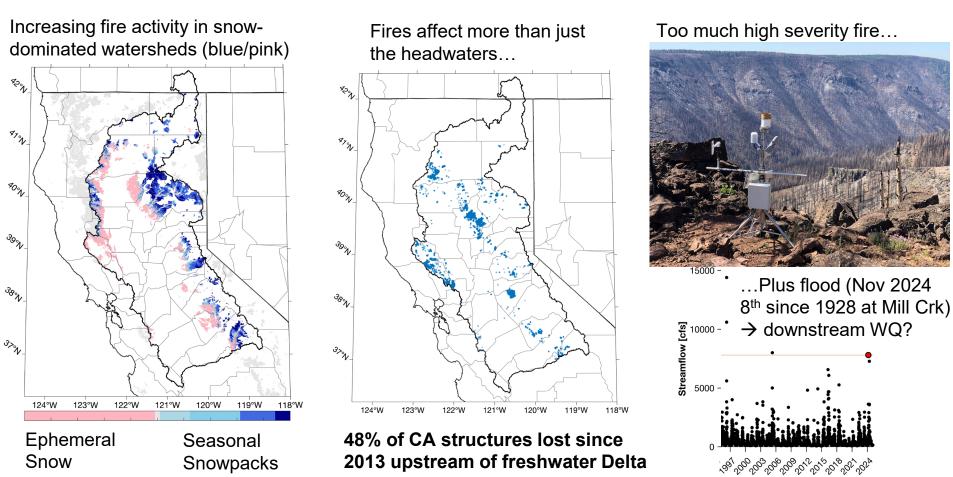
Projections suggest **increases in sequential events** (Bowers+ 2023, Zhou+ 2024), but definitions and timescales vary (e.g., from 'active periods' (<14 days) to seasonal (90 days))

2) Storms become **increasingly warm** (more rain, less snow) and potentially more efficient at runoff generation


"...Increasingly managing storms as a hazard rather than a resource" -Mike Anderson, CA DWR

Now in "peak rain-on-snow" (Heggli+ 2023): warming storms but potential for historic snowpacks → increased ROS flood potential

Shulgina+ 2023: Projections for continued warming (snow→ rain) and increase in AR-derived precipitation (~12% during cool season).


"Beyond 2050, 1.5 million acre-feet of snow-water-equivalent (SWE) 'lost' in an average year" → water realized as mid-winter runoff

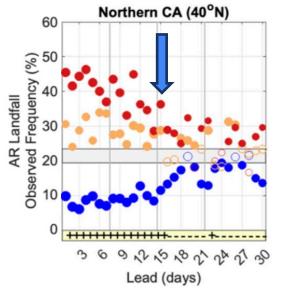
CA DWR

3) "State of the Headwaters" abruptly changing

Planning and Operationally-Relevant Progress: Physical Science

Moving into nuance and towards system-wide understanding

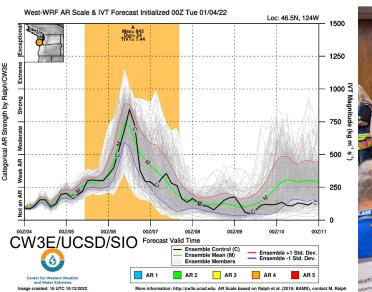
-Need for integrated (coupled GW-SW) hydrologic models and other quantitative, comprehensive ecosystem adaptive management experiments


-What are AR/Flood implications for groundwater?

(e.g., Siirilia-Woodburn+ 2024)

-Subseasonal forecasts of AR activity (Guirguis+ 2023)

Guidance into weeks 2-3 improving...



Planning and Operationally-Relevant Progress: Social Science

Techniques to assess, evaluate, and improve of knowledge sharing, decision-making, and interagency partnerships throughout the hazard management cycle Requires: Time + Communication

Cooperation
Coordination
Collaboration
Coproduction(?)

Goal: Multi-benefit Outcomes

Remark: Maintaining and expanding observational networks is paramount for monitoring, verification, and measuring success of adaptation to changing storms/floods

- →What is changing (or not)? How fast? Where?
- → Are interventions/management actions meeting objectives?
- →After Action Review approach: What worked well, what didn't work well, what to do better?
- Continue centennial-scale records (wx+climate data, streamflow, sea level)
- Continue 'contemporary' (multi-decadal) records (satellites, NOAA/DWR networks, soil moisture, snowpack; Hatchett+ 2020)

Develop new datasets (citizen/community science, remote sensing) → Motivates broader community engagement, builds support for science and management, shows multiple needs can be met

otl	lights	
	Partnership Spotlight: Yolo Bypass Cache Slough Partnership	
	Partnership Spotlight: Collaborating on an updated and refined regional flood management strategy for the San Joaquin River	. 2-5
	Project Spotlight: Dos Rios Ranch Floodplain Expansion and Ecosystem Restoration Project, Phase 1	2-10
	Project Spotlight: Southport Levee Setback Project	2-13
	Project Spotlight: Hamilton City Flood Damage Reduction and Ecosystem Restoration	2-17
	Project Spotlight: Merced Flood-MAR Reconnaissance Study	2-31
	Policy Spotlight: Conservation Strategy Climate Adaptation	2-37
	Policy Spotlight: Groundwater Sustainability Agency Coordination	2-41
	Program Spotlight: Annual Levee Inspections	2-43
	Project Spotlight: Using Floodwaters for Managed Aquifer Recharge	2-62
	Policy Spotlight: Expanding Nature-based Solutions and Engineering with Nature	. 3-8
	Project Spotlight: New Bullards Bar Atmospheric River Control Spillway	3-14
	Project Spotlight: Yolo Bypass Cache Slough Program	3-16
	Project Spotlight: Regional Flood Management Strategy for the San Joaquin River Basin	3-20
	Project Spotlight: Black Rascal Creek Flood Control Project	3-30
	Project Spotlight: Story of Success - Learning from the Yolo Bypass Wildlife Area	

Atmospheric Rivers and Floods in California's Changing Hydroclimate

Presented by: Benjamin Hatchett, Colorado State University Benjamin.Hatchett@colostate.edu

Alexander Gershunov¹, Benjamin Hatchett², Alexander Weyant¹, Michael Dettinger¹, Lu Su¹, Alan Rhoades³, Park Williams⁴, Michael Anderson⁵, Pamela Rittelmeyer⁶, Dennis Lettenmayer⁴, Daniel Cayan¹, Rosa Luna Niño¹, Kristen Guirguis¹, Tom Corringham¹, Romain Maendly⁵, F. Martin Ralph¹

Nick Shockey / California Department of Water Resources