

Working with Water: Improving Sediment Management for Marsh Resilience in SF Bay

JULIE BEAGLE

Environmental Services Branch Chief Engineering with Nature Practice Lead San Francisco District, USACE

Engineering With Nature

SFEP IC May 21, 2025

of Engineers.

07-00

THE OTHER DESIGNATION

all's

Corte Madera WARMER results in terms of vegetation category: mudflat, low, mid, or high marsh, or upland transition. Karen Thorne, USGS

PROBLEMS

- Limited sediment supply regionally + sealevel rise
 - Marsh drowning and erosion
 - Habitat loss for endangered and threatened species
 - Increased **flood risk** for low-lying communities

Corte Madera WARMER results in terms of vegetation category: mudflat, low, mid, or high marsh, or upland transition. Karen Thorne, USGS

PROBLEMS

- Limited **sediment supply** regionally + **sealevel rise**
 - Marsh drowning and erosion
 - Habitat loss for endangered and threatened species
 - Increased **flood risk** for low-lying communities

OPPORTUNITY

- Reuse dredged material in innovative ways to support existing bayland ecosystems
- Leverage dredged material from navigation channels
 - Beneficial Use: Direct Placement
 - Novel EWN Methods (e.g., Strategic Placement)

MARSH DROWNING/DOWNSHIFTING

Figure G-9. Corte Madera WARMER results in terms of vegetation category: mudflat, low, mid, or high marsh, or upland transition. From Karen Thorne, USGS

Habitat availability of Ridgways' rails over time

Fig. 9 *R. longirostris obsoletus* habitat availability at MHHW. Projected marsh area (%) where elevation plus maximum vegetation height exceeds MHHW by at least 20 cm Swanson et al. 2013

MANY TOOLS IN THE BENEFICIAL USE TOOLBOX

Remove obstructions

- Reservoir management
- Reconnect Creeks to Baylands
- Berm/pond breaches

Assist natural processes

- Strategic shallow water placement
- Strategic pulse dredging in tidal channels

Replace natural processes

- Mechanical placement (direct)
- Hydraulic placement

SEDIMENT TRANSPORT BETWEEN SHALLOWS AND MARSH

MIMICKING/BOOSTING SEDIMENT TRANSPORT PROCESSES

WHERE CAN THIS TOOL BE USED?

Site selection criteria

- Eroding or drowning marsh, lack of natural sediment supply
- Sufficient wind-wave action to resuspend sediment placed
- Open to tidal exchange
- Wind-wave shore-normal approach
- Deep water close to shore
- Avoiding large eelgrass beds/nearshore reef projects
- Flood protection for EJ/disadvantaged communities

MODELING

 Modeling using UnTRIM Bay-Delta model and sediment transport model to simulate existing conditions and placement alternatives Emeryville Crescent

Whale's Tail

Eden Landing

• First Round – Site Selection

- Determine whether Emeryville or Eden Landing is most suitable for this pilot study
- Evaluate different placement strategies
 - Testing 100,000 yd³ total
 - Placement locations
- Second Round –sensitivity analysis
 - Different volumes
 - Seasonal differences
 - Size of placement footprint
 - Sediment sources

 Pushed across the Bay by Tugboat

BERNICE LIND

Deposited in 169 loads
between Dec 6 and Dec 31,
2023

KEY MONITORING QUESTIONS

What are the potential impacts on the benthos and ecological communities nearby?

- How long do the effects last?
- How far do the effects spread?
- What about eelgrass in the area?

KEY MONITORING QUESTIONS

What are the potential impacts on the benthos and ecological communities nearby?

- How long do the effects last?
- How far do the effects spread?
- What about eelgrass in the area?

Where does the sediment end up? How do physical processes (tides and waves influence its transport?

- Repeat bathymetric surveys
- What wave conditions move sediment?
- Use of a particle tracking study
- Understanding deposition in mudflats, marshes, breached ponds

PLACEMENT DEC 6-31, 2023

Dredgers reported time, location and volume of each placement

Sediment fate and transport

EFFECTS ON BENTHIC COMMUNITIES

Benthic community density, diversity and accessibility for predators

Before After Control Impact (BACI) design to evaluate effects:

- Distance from placement
- Time since placement

Intensive sampling effort

- immediately pre and post placement
- 6 months later

-0.84

Prey Accessibility

USGS WERC: De La Cruz, Woo, Graham

Potential impacts

EELGRASS IMPACTS

- 80% areal increase between pre- and post-construction surveys
- 27% increase in eelgrass density

Table 2. Eelgrass Vegetated Areal Extent Summary

Location	Pre-Construction (October 2023)	Post-Construction (April 2024)	Area Difference (Post minus Pre)	Percent Change
APE	37.64	67.37	+29.73 m ²	80.0% increase
Reference Site	4.03	7.98	+3.95 m ²	98.0% increase

Table 3. Eelgrass Density Summary

Location	Pre-Construction Density (turion/m ²)	Post-Construction Density (turion/m ²)	Mean Percent Difference within the (Post/Pre)-1)*100
APE	95.2±20.4	120.8±22.3	26.9% increase
Reference Site	72.0±21.7	134.4±30.0	86.7% increase

SSC DURING PLACEMENT

Increased SSC reduces light penetration, a concern for eelgrass and phytoplankton

- Spikes in SSC occurred after many placement events
- Duration typically 1-1.5 hours
- Observed at 'closest' station in direction of tidal currents
- During wave events, SSC at all stations reached 150-300 mg/L for >12 hours

Placement increased SSC for short periods, without exceeding levels that occur naturally

REPEAT BATHYMETRIC MAPPING:

- Multiple mounds
- Varying size
- Height and volume gradually decreasing

TRACER STUDY

- 1,000 kg of fluorescent, magnetic coated silt particles (tracer)
- Deployed January 11, 2024
- One location in the placement area

- What are the primary directions of transport from the placement area?
- Where does sediment from the placement area end up?
- How does that change over time?

Sediment fate and transport

TRACER SAMPLING IN THE SHALLOWS

19 magnet stations, one day after tracer deployment

Sediment fate and transport

MARSH AND RESTORATION AREA

Monthly from Nov 2023 to Dec 2024:

- Magnets deployed in tidal creeks to capture tracer
- Transects of sediment pads across marsh (6) and restored areas (6) to measure deposition

USGS WERC: Thorne, Buffington

Sediment fate and transport

Magnet stations in tidal creeks

THE MARSH **TRACERS IN**

BENEFICIAL USE PILOT PROJECTS TAKE TEAMWORK!

USACE

Peter Mull - Project Manager John Dingler- Planning Mentor Arye Janoff - Planner Julie Beagle- Environmental Planner Eric Joliffe- Environmental Planner Ellie Covington- Environmental Planner Tiffany Cheng- Coastal Engineer Fanny Chan- Civil Engineer Kelly Boyd – Real Estate Stephanie Sahinoglu-Cultural Resources

Modeling

Michael MacWilliams, Aaron Bever (AnchorQEA)

Project Partners CA Coastal Conservancy Evyan Sloane (SCC) Brenda Goeden (BCDC)

SF Bay Regional Water Quality Control Board (CEQA Lead)

Xavier Fernandez Kevin Lunde Jazzy Graham-Davis Christina Toms

USGS / Monitoring

Jessie Lacy, Andrew Stevens, Sam McGill Karen Thorne, Kevin Buffington, Lindsay Rankin Susan de la Cruz, Isa Woo, Tanya Graham Keith Merkel

MANY OTHERS!

What's next?

- Scaling up: Toward Marsh Maintenance Plan!
- What is the pathway to get there? Moving from pilot into practice.
- Lessons learned from Round 1
- Can we get to a Round 2?!!

Strategic Placement-Emeryville Crescent

The Need:

• Small eroding marsh, important for habitat in Central Bay, infrastructure

Partners

- SFEP
- East Bay Regional Parks District
- <u>Cost share-</u> State Coastal Conservancy through WRDA 2020 Section 125a

Permitting pathways

- Building from existing NEPA/CEQA from Eden Landing Pilot
- Will start agency coordination this calendar year
- Oakland Harbor O&M dredging

Timing:

• Targeting summer 2027 (or 28)

CHALLENGES TO OVERCOME, LESSONS LEARNED

- How to increase resuspension
 - More control of shape/heights of mounds?
- Contracting lessons learned
- Avoid/monitor nearby eelgrass bed
- Which monitoring approaches worked the most effectively?

THANK YOU

Contact: Julie.R.Beagle@usace.army.mil

