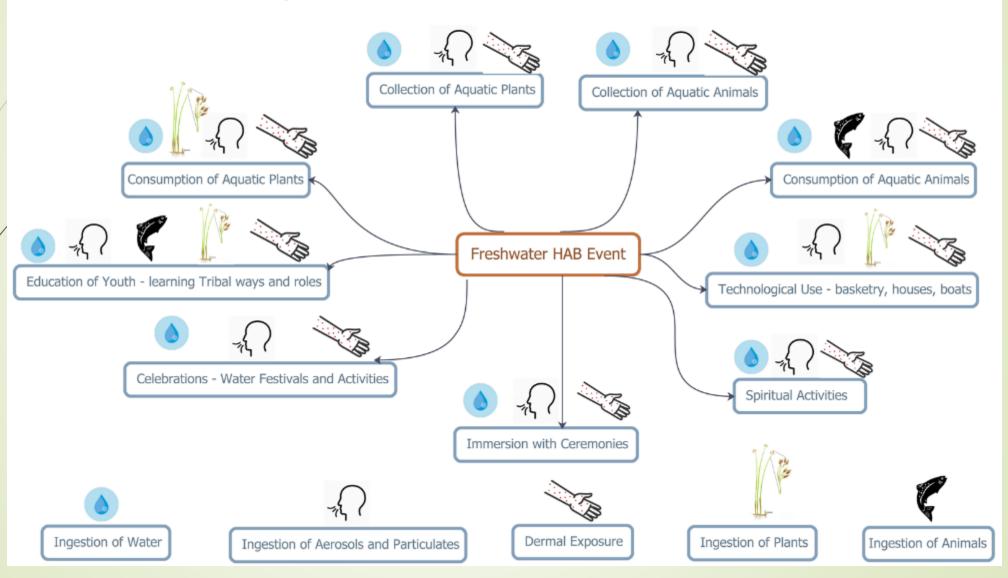


Water Quality and Its Impact on Tribal Beneficial Uses

Sarah Ryan, Environmental Director, Big Valley Band of Pomo Indians
State of the Estuary
May 28, 2024

Tribal Beneficial Uses - Definitions

Tribal Tradition and Culture (CUL): Uses of water that support the cultural, spiritual, ceremonial, or traditional rights or LIFEWAYS of CALIFORNIA NATIVE AMERICAN TRIBES, including, but not limited to navigation, ceremonies, or fishing, gathering, or consumption of natural aquatic resources, including fish, shellfish, vegetation, and materials.


Tribal Subsistence Fishing (T-SUB): Uses of water involving the non-commercial catching or gathering of natural aquatic resources, including fish and shellfish, for consumption by individuals, households, or communities of California Native American Tribes to meet needs for sustenance.

Adopted by the State Water Resources Control Board in May 2017

https://www.waterboards.ca.gov/about_us/public_participation/tribal_affairs/beneficial_uses.html

Tribal Cultural Use Conceptual Freshwater Harmful Algal Bloom (FHAB) Impact Pathway

Native peoples were given their land by Creator and honor Creator and their Ancestors by maintaining traditions and cultural landscapes. This is the connection between the land and the people. Uses can be repetitive, gender assigned and long term. Exposures can occur second hand through the use and trade of plants and animals that have been in contact with HABs.

Amending Basin Plans to Protect Tribal Beneficial Uses

- Tribes in California are now engaging with Regional Waterboards to take the next steps of the Clean Water Act – designating water bodies with Tribal traditional uses and identifying Water Quality Objectives related to Tribal Beneficial Uses for these Basin Plans
- All NPDES permits and TMDL clean ups are linked to stated beneficial uses and water quality objectives
- The Clean Water Act requires period review of water quality data against water quality objectives. Available Tribal data is used during these 305b evaluations.

Clear Lake (Xabatin)

- Largest natural freshwater lake in California
- 100 miles of shoreline
- Surface area of 43,785 acres
- Average depth 27 feet, max depth 60 feet
- Oldest lake in North America – sediment cores dating 1.8 million years

Clear Lake Cyanotoxin Monitoring Program

Initiated and developed by Big Valley Band of Pomo Indians and Elem Indian Colony, 2014. https://bit.ly/ClearLakeCyanoMonitoringProgram

California Cyanotoxin Guidelines

Action levels for selected scenarios

		Microcystins ¹	Anatoxin-a	Cylindro- spermopsin	Media (units)
	Human recreational uses ²	0.8	90	4	Water (µg/L)
	Human fish consumption	10	5000	70	Fish (ng/g) ww³
	Subchronic water intake, dog ⁴	2	100	10	Water (μg/L)
	Subchronic crust and mat intake, dog	0.01	0.3	0.04	Crusts and Mats (mg/kg) dw ⁵
	Acute water intake, dog6	100	100	200	Water (µg/L)
	Acute crust and mat intake, dog	0.5	0.3	0.5	Crusts and Mats (mg/kg) dw⁵
	Subchronic water intake, cattle ⁷	0.9	40	5	Water (µg/L)
	Subchronic crust and mat intake, cattle ⁷	0.1	3	0.4	Crusts and Mats (mg/kg) dw ⁵
	Acute water intake, cattle7	50	40	60	Water (µg/L)
	Acute crust and mat intake, cattle ⁷	5	3	5	Crusts and Mats (mg/kg) dw ⁵

'Suggested Action Levels and Six Cyanotoxins', CA OEHHA, 2012

https://oehha.ca .gov/riskassessment/doc ument/toxicologi cal-summaryand-suggestedaction-levelsreducepotentialadverse

Cyanotoxins' Impacts on Beneficial Uses

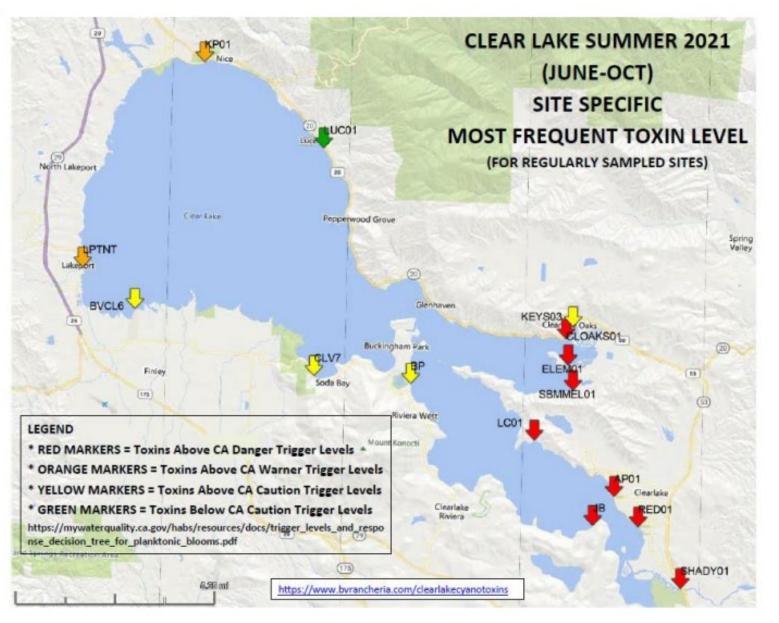
DANGER

Toxins from algae in these waters can harm people and kill pets and livestock

STAY OUT OF THE WATER UNTIL FURTHER NOTICE. Do not touch scum in the water or on shoreline.


DO NOT let pets or livestock drink or go into the water or go near the scum.

DO NOT eat fish or shellfish from these waters.


DO NOT use these waters for drinking or cooking. Boiling or filtering will not make the water safe.

HUMAN **EXPOSURE**

Identifying Trends For Toxin Levels

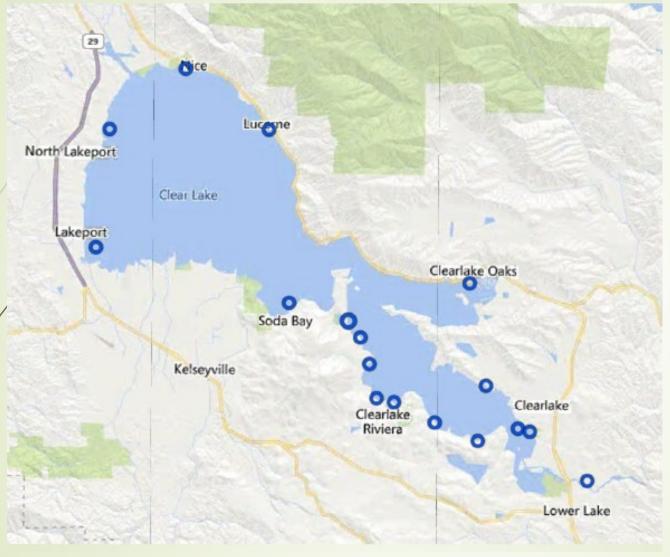
Cyanotoxins' Impacts on Beneficial Uses

FISH CONSUMPTION

Tr.							
		DATE COLLECTED	SPECIES NAME				
INVENT		(see seasonal	*species are	Microcystin	Microcystin		
ORY	SITE ID	color chart at	categorized by	RESULT TISSUE	RESULT LIVER		
NAME		bottom of	different	(ng/g)	(ng/g)		
-	₩	spreadsheet) 🔻	colors 🔻	Ţ	-		
83	M4	4/21/2015	CRAYFISH	5.94			
84	609	4/22/2015	BLACK CRAPPIE	4	59.75		
85	762	4/23/2015	TULE PERCH	3.02	6.18		
86	609	4/22/2015	TULE PERCH	4.56	ND		
87	AC1	3/25/2010	HITCH	13.34☆	52.42		
88	AC1	3/25/2010	HITCH	16.5 太	10.89		
89	AC1	3/25/2010	HITCH	9.08	1.65		
90	AC1	MAY, 2010	HITCH	8.47	7.51		
91	215	5/26/2015	LM BASS	1.94	8.04		
93	BVCL6	12/12/2017	MUSSEL	28.6 太			
100	BVCL6	12/12/2017	MUSSEL	17.25☆			
101	BVCL6	12/12/2017	MUSSEL	15.21☆			
103	CP	12/14/2017	MUSSEL	12.73			
104	CP	12/14/2017	MUSSEL	19.53			
105	CP	12/14/2017	MUSSEL	22.95			
able 12: Sport Fish and Shellfish Action Levels for Consumption (ng/g, ww ¹)							

Table 12: Sport Fish and Shellfish Action Levels for Consumption (ng/g, ww¹)

	Microcystins	Anatoxin-a	Cylindrospermopsin
Sport fish tissue level	★10	5000	70


Fish Cyanotoxin Study, 2018

- Using CalEPA EJ funds, Big Valley EPA staff collected fish and shellfish species from 2010-2018 and submitted them to a lab for microcystin cyanotoxin analysis.
- A total of 44 Clear Lake fish (tissue and liver samples) and 49 Clear Lake shellfish (crayfish and mussels), totaling 126 samples and ten species were submitted in February 2018.
 - Multiple species Tribally important fish
 - All arms of the lake
 - All seasons

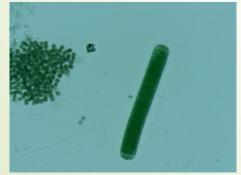
FISH	AVERAGE MICROCYSTIN IN TISSUE NG/G	COUNT
CRAPPIE	4.15	8
BLACKFISH	6.91	1
BLUEGILL	ND	2
CARP	13.60	2
CATFISH	2.02	6
CRAYFISH	4.19	23
HITCH	9.81	8
BASS	1.85	7
MUSSEL	10.33	26
TULE PERCH	2.99	9
all fish species	5.90	43
all shellfish species	7.26	49

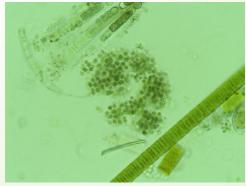
Data can be found in CEDEN, Parent Project: Clear Lake Fish Cyanotoxin Study https://ceden.waterboards.ca.gov/AdvancedQueryTool

Cyanotoxins' Impacts on Beneficial Uses

Surface Water Public Water Systems, Clear Lake

DRINKING WATER

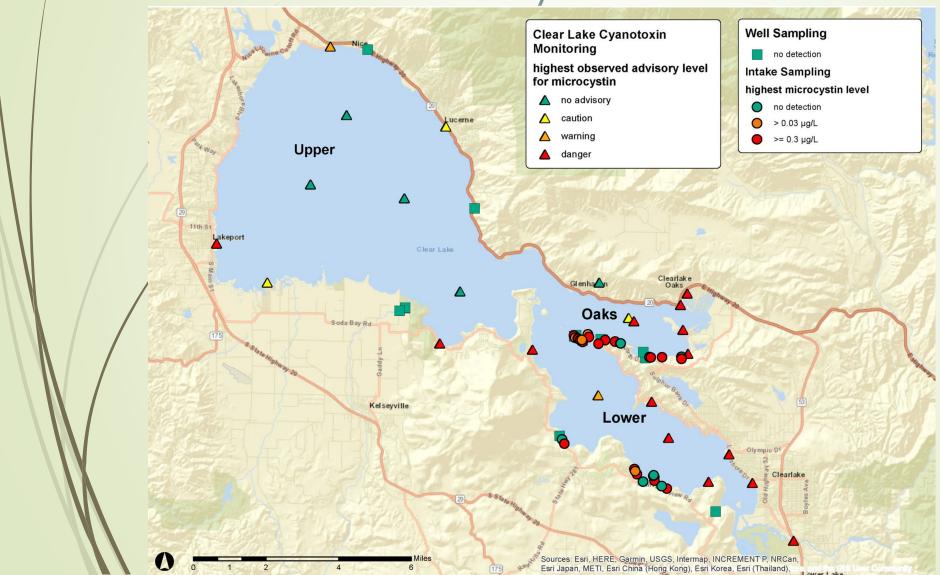

Clear Lake surface
water serves
approximately 60% of
Lake County residents
through 17 Public Water
Systems.


The Safe Drinking Water Act guidelines on cyanotoxins:

https://www.epa.gov/groundwater-and-drinkingwater/drinking-water-healthadvisory-documentscyanobacterial-toxins

Cal-WATCH Program: Testing of Drinking Water from Private (Self-Supplied) Systems off Clear Lake

- June-October 2021, self supplied (private) tap water from 36 homes collected and analyzed.
- Microscopy identified Microcystis, Gloeotrichia, Kamptonema spp. in samples.
- Of the 36 homes, 20 had detectable microcystin in them, with 13 homes above the US EPA Health Advisory of 0.3 µg/L. The highest value in the tap water was 3.85 µg/L.
- Ambient lake microcystin levels reached 160,378 µg/L.



Photos from tap water samples from private intakes, Clear Lake.

Review of Public Water Systems vs Private and cyanotoxin detects

- https://awwa.onlineli brary.wiley.com/doi/f ull/10.1002/aws2.1337
 - Vulnerabilities of self-supplied water systems with intakes to source water microcystin and cyanobacteria compared with more advanced monitoring and treatment capabilities at public water systems.

Summary

- Tribal water programs can provide much needed information to protection Tribal uses of water
- Exposure scenarios for Tribal traditional activities are still being developed and will be integrated into regional management plans
- Meanwhile, Tribal traditional uses continue, and exposures to unacceptable contaminants continue.

Sarah Ryan
Big Valley Band of Pomo Indians

sryan@big-valley.net

https://www.bvrancheria.com/clearlakecyanotoxins

707-263-3924 x132