

Modeling Tool Development

GreenPlanIT TAC meeting

Jing Wu

June 17, 2014

Modeling tool

Modeling tool

- Establish baseline condition
 - Characterizes the current physical system
 - Represents the reference point for any improvement made through LIDs
 - The starting point for LID selection and placement optimization
- Identify critical sources areas

 Quantify flow and water quality reduction from various LID scenarios

Modeling tool development

- Model development steps
 - Select model platform
 - Identify target watershed
 - Collect model input data
 - Calibrate model with observed data
 - Generate pre- and post-LID hydrographs and pollutographs

Model platform

- Storm Water Management Model (SWMM)
 - Support by EPA
 - Widely used for stormwater management
 - Capable of simulating hydrology, water quality and LID performance
 - Simplified hydrology and water quality mechanisms
 - Essentially overland flow and no in-stream processes so flow could be flashy

Hydrological and WQ model

- Develop calibrated hydrological and WQ model
- San Jose case study
 - Development area largely within Guadalupe
 - Model area (18613 acre) delineated into 150 subbasins
 - Model simulation period 2010–2011at 15 minutes step
 - Model calibration@ 2 stations for hydrology and @1 for sediment

Guadalupe Sub-Watersheds

Hydrology calibration

Los Gatos at Lincoln Ave

USGS 11169025 at highway 101

Calibration statistics

Statistics	Model results	Criteria
Difference in storm volume	-4%	< 10%
Model efficiency	0.97	>=0.7

NSE = 1 -
$$\begin{bmatrix} \sum_{i=1}^{n} (Y_{i}^{obs} - Y_{i}^{sim})^{2} \\ \sum_{i=1}^{n} (Y_{i}^{obs} - Y^{mean})^{2} \end{bmatrix}$$

Sediment calibration

Daily sediment concentration at USGS@101

High-leverage sites

 Use calibrated hydrological and pollutant models to identify high-leverage sites

 Similar maps can be produced through GIS analysis (%impervious, source area layers, etc..)

Watershed-scale LID model

- Use calibrated hydrological and pollutant models as baseline condition
- Generate pre- and post-LID hydrographs and pollutographs
- Quantify flow and water quality reduction for various LID scenarios
- Serve as the foundation for Optimization algorithm

LID model demo

- San Jose development area
 - 4300 acre
 - 53 sub-basins
 - Range from 20 to 150 acres
- □ 1inch rain with 24-hour duration

- Example Bioretention
 - 5000 square feet surface area
 - Surface storage depth 12in
 - Soil thickness 18 in
 - Storage height 12 in

Item #4

Questions for TAC

- Is the current base model suitable for serving as a basis for optimization tool and master plan development?
 - Are current calibration results acceptable?
 - What further improvement is needed?
 - Other pollutants
 PCB/Hg
 Can simulate as a fraction of sediment