Table A: Assessment Methods -What area(s) of waterway management are we assessing?

					FIOD			15							
No.	Assessment Methods	Acronym	Description (Developer)				Α	reas (aka c	atego	ries)				
	Guy Ziv														
	InVEST Annual Water Yield model	InVEST-Water Yield	Estimates annual amount of water available for multiple users within				x								
	InVEST Sediment Retention Model	InVEST- Sediment	Estimate the amount of sediments exported and retained on the landscape	x				x			x				
	InVEST Nutrient Retention model	InVEST-Nutrient	Estimate the amount of N and P exported and retained on the landscape	x					x		x				
	InVEST Habitat Quality model	InVEST-Habitat Quality	Estimate the quality of terrestrial habitat based on intrinsic quality and spatial threats										x		x
	InVEST Habitat Risk Assessment model	InVEST-HRA	Estimate risk to habitat or species, based on aggregated stressors with different exposure and consequence levels										x		x
	Christina Sloop														
	Bird - Area Search		http://data.prbo.org/cadc2/index.php?page= songbird-area-searches	x	x					x	x		x		
	Birds - Point Counts		http://data.prbo.org/cadc2/index.php?page= songbird-point-counts	x	x					x	x		x		
	IBI - macro invertebrates		http://water.epa.gov/type/wetlands/assessm ent/fact5.cfm			x				x		x		x	
	Eric Stein														
	California Rapid Assessment Method	CRAM	stream and wetland condition assessment (SCCWRP, SFEI, MLML)	x	x						x	x			
	California Stream Condition Index	CSCI	benthic invertebrate assessment - replaces old IBI (SWRCB, DFG, USGS, SCCWRP)						x		x				
	Periphyton IBI	PIBI	stream algae bioassessment (SCCWRP, SWRCB)						x		x				
	Physical Habitat Assessment	РНАВ	stream physical habitat assessment (EPA, DFG, SWRCB)	x								x		x	
	Hydromodification Risk Assessment	none	screens sites based on susceptibility to hydromod (SCCWRP, CSU-Ft. Collins)	x	x	x	x	x				x			

ŝ

Healthy Watersheds Initiative	HWI	GIS based assessment of condition and vulnerability at HUC 12 level (EPA)		x	x	x	x		x					
Tom Griggs														
Riparian Restoration Design														
Joshua Fuller														
Stream Visual Assessment Protocol	SVAP	Qualitative evaluation of the condition of aquatic ecosystems of wadeable streams. (USDA NRCS)	x	x					x	x	x	x	x	x
Intrinsic Potential Model	IP-km Model	Stream gradient, channel width, annual discharge model to assess potential production capacity of salmonid habitat				x					x		x	
Environmental Diagnostic Treatment Model	EDT Model	Use of many parameters to evaluate production capacity of potential salmonid				x					x		x	
CDFG Habitat Typing	HAB 8	Field observation methodology for assesses habitat features, quality and extent	x								x		x	
Expert Habitat Mapping	ЕНМ	High resolution assessment of salmonid habitat under a range of flow conditions				x					x		x	
PHABSIM	PHABSIM	Habitat flow relationship model				x					x		x	
Gretchen Hayes														
River Rutherford Reach Restoration Project		Monitoring protocols used for the Napa River Rutherford Reach Restoration Project	x	x			x			x	x		x	x
Fraser Shilling														
California Water Plan, Water Sustainability Indicator Framework	CWP-SIF	Multiple indicator based approach, uses distance to target method (Shilling et al., 2007)	x	x	x	x	x	x	x	x	x	x	x	x
Josh Collins														
Proper Functioning Condition	PFC													
Watershed Assessment of River Stability & Sediment Supply	WARSSS	http://water.epa.gov/scitech/datait/tools/war sss/index.cfm												
WRAMP Framework and Tool Set	(CARI, CRAM, Riparian Width Estimator, Landscape Profile Tool, EcoAtlas, Status and Trends, etc.)	Statewide framework for comprehensive assessment of aquatic resources with a focus on wetlands and associated riparian areas, with intended application across federal and state water quality and willdife protection programs. Collectivley the WRAMP tools addresss each category to some degree.	x	x	x	x	x	x	x	x	x	x	x	x

MATRIX v.1: Watershed / Waterway Assessment Methods Table B: Use and Critique - What are the best use(s)

for each assessment?

List of Uses

- 1 ECOLOGICAL & SYSTEM FUNCTIONS
 - 1.1 Stream channel geomorphic functioning
 - 1.2 Floodplain and floodway functions
 - 1.3 Riparian functions
 - 1.4 Groundwater recharge and protection

2 REGULATORY & MANGEMENT

- 2.1 Regulatory programs
- 2.2 Stormwater management
- 2.3 Emergency responses to floods and fire
- 2.4 Prevent and or treat water pollution
- 2.5 Protection of endangered –threatened animals and plants

3 RESTORATION & PLANNING

- 3.1 Instream and floodplain protection or restoration
- 3.2 Restoration design
- 3.3 Land use planning
- 3.4 Prioritizing projects and programs
- 3.5 Protection or acquisition of open space and refuges

4 RESTORATION: HABITAT

- 4.1 Fish habitat protection-enhancement
- 4.2 Bird habitat protection-enhancement
- 4.3 Aquatic amphibian, reptile, insect, mammalian habitat
- 5 ANTHROPOGENIC & OTHER USES
 - 5.1 Research
 - 5.2 Historical heritage
 - 5.3 Recreational values
 - 5.4 Educational-communication
 - 5.5 Green house gas reduction-climate change adaptability

MATRIX v.1: Waterway Assessment Methods

Table B: Use and Critique - What are the best use(s) for each assessment?

Definitions and Instructions

- 1. Assessment Method: Name or acronym from Table A: Assessment Methods
- <u>Environmental Condition Based</u>: method assesses physical condition(s), e.g. characteristics of the channel and/or floodplain.
 <u>Ecological Function & Process Based</u>: method assesses function(s) and process(es), e.g. fish and bird surveys; estimates of sediment transport.
- 4. Communication Based: method assesses overall 'how we're doing'; e.g. indicators of overall health; report card.
- 5. Uses, by Number: Reference the "List of Uses" to indicate the number of the use(s) associated with the assessment method.

6. Method and Use Applicability: Indicate the applicability of the assessment method to each associated use: (f)=fully; p)=partially; (na)=not applicable.

No. (from Table A)	[1] Assessment Methods	[2] Environmental Condition based Check if applicable	[3] Ecological Function & Process based Check if applicable	[4] Communication based Check if applicable	[5] Uses, by number Reference the list at right to indicate associated uses.	[6] Ap Indica applica use: (f)	(6) Applicability Indicate the applicability of each use: (f) (p) (na) x		[7] Applicability Explaination e.g. Nature of the partial applicability or limitations; comments on the strengths and limitations
	InVEST-WaterYield		x		3.3 3.4	x x			
	InVEST-Sediment		x		1.1 1.3 2.1 3.4	x	X X X		
	InVEST-Nutrient		x		1.1 1.3 2.1 2.4 3.4	x	X X X X		
	InVEST-HabitatQuality	x			2.5 3.5 4.2	X X	x		
	InVEST-HRA			x	2.5 3.5 4.2	X	X		
	IBI - Macroinvertebrates	x	x	x	1.3 2.2		x		
	Riparian bird surveys	x	x	x	1.2 1.3 4.3 5.1		X X X X		

06/04/13

					5.4		х		
					11				
					1.1				
	CRAM	×		x	1.3				
	••••				2.1				
					3.4				
					2.1				
					J. I				
					2.1				
					2.4				
					3.4				
	CSCI	х	х	х	0.4				
					3.1				
-					2.1				
					Z. I				
					2.4				
					34				
	PIBI	х	х	х	2.1				
					3.1				
	1			1					
					1.1	T	T T	Γ	
1	1			1	2.1	1			1
1	1			1	2.1	I			4
1		v		v	2.4				
1	FRAD	X		×	3.4				
					4.1				
					4.1				
					1.1				
					12				
	Libraha and all fine time. Diale				1.2				
	Hydromodification Risk				Z.1				
	Assessment				2.2				
					31				
					2.2				
					3.3				
					2.1				
					3.3				
					3.4				
	HWI	х	х	х	0.4				
					3.5				
					5.4				
	Riparian Restoration Design								
				1					
					32	x			
					0.2	Â			
1				1					
1	Site Assessment for	v		1		1			
	Horticultural Potential	^							
						1			
1				1		<u> </u>			
					3.2	х			
1				1					
	Assessment of site-specific								
	hydrology - Floodina. around-		х						
	water table								
1				1					
1				1		1			
<u> </u>				1	4.5				
1				1	1.2	х			
					1.3		х		
1	Public Safety - Flooding Issues			1	23	Y			
1	Hydraulia Modeling			x	2.0	1 Û			
1					3.2	X			
1									

06/04/1	3

				4.0				
				4.2	х			
Assessment of wildlife use			х					
				2.1		X		
				2.5		x	-	
IP-KM	х	х		4.1		x		
				3.2		X		
				2.1				
				2.5				
EDT	х	х		4 1				
				3.2				
				2.1		х		
				2.5		X		
HAB 9				<u> </u>		X		
				3.2		X		
				2.1		х		
				2.5		X		
EHM				<u> </u>		X		
				3.2		X		
				•.=				
				2.1		Х		
				2.5		х		
PHABISM				4.4		X		
				4.1		X		
				0.2		~		
				1.1		Х		
				1.3		Х		
Napa River Rutherford Reach	х	х	х	3.1		Х		
Restoration				3.2		X		
				4.1			-	
				1.1	х			
				1.2	Х			
				1.4	х			
				2.1	X			
				2.2	X			
CWP-SIF	x	х	х	2.5	X			
				3.3	х			
				4.1	х			
				4.3	X			
				5.1 5.4	X			
WRAMP Framework and Tool	x (L1, L2 tools)	x (L2 and L3 tools)	x (Wetlands Portal.	1.1 (CARI.	x			
Set	· · · · · · /	,	eCRAM, and	CRAM)				
			EcoAtlas	1.2 (CARI,	х			
				CRAM, Rip				
				Estimator				
				Landscape				
				Profile Tool)				
				1.3 (CARI, Rip	х			
				Width				
				Estimator,				
				UKAM,				
				Profile Tool				
				1.4 (EcoAtlas		х		
				link to				
		1		GeoTracker		1		
				A • • • • •				

	2.1 (404/401.	х			
	WDR, NPDES)				
	2.2 (CARI,	х			
	EcoAtlasl)				
	2.3 (CARI,	х			
	EcoAtlas)				
	2.4 (all tools)	х			
	2.5 (CARI,	х			
	CRAM, Status				
	and Trends,				
	EcoAtlas)				
	3.1 (CARI,	х			
	CRAM,				
	Lanoscape Drofilo Tool				
	Frontie Tool,				
	3.2 (CARI	x			
	CRAM Rip	~			
	Width				
	Estimator.				
	Landscape				
	Profile Tool,				
	EcoAtlas)				
	3.3 (CARI, Rip	х			
	Width				
	Estimator,				
	Status and				
	Trends,				
	Landscape				
	Profile Looi,				
	EcoAtias)	м			
	3.4 (CARI,	x			
	and Trends				
	Landscape				
	Profile Tool.				
	EcoAtlas)				
	3.5 (CARI,	х			
	Status and				
	Trends,				
	Landscape				
	Profile Tool,				
	EcoAtlas)				
	4.1 (CARI,	х			
	CRAM, Rip				
	Width				
	Estimator,				
	Lanoscape Drofio Tool				
	Frontiae				
	4.2 (CARI	x			
	CRAM. Rip	~			
	Width				
	Estimator,				
	Landscape				
	Profie Tool,				
	EcoAtlas				
	4.3 (CARI,	х			
	CRAM, Rip				
	Width				
	Estimator,				
	Landscape				
	Profie Tool,				
	ECOATIAS		×		
	5.1 (eCRAM		×		
	and EcoAtlas as				
	data sources)				
	5.2 (Historical	х			1
	Ecology in				
	EcoAtlas)				
	5.3 (EcoAtlas)		х		
	5.4 (EcoAtlas)	х			
	5.5 (CARI,	х			
	Status and				
	Trends,				
	EcoAtlas)				1

1			t i	1
1				
1			L	