ASSESSMENTS FOR STORMWATER MONITORING AND MANAGEMENT

Eric Stein

Biology Departments

Southern California Coastal Water Research Project (SCCWRP)

Effects of Stormwater Runoff

Waterbody Impairments

Stormwater Assessment is Complex

Monitoring and Assessment Framework

Don't Freak Out!

Coordination

Integration

Communication

Monitoring Philosophy

- Monitoring data should answer real questions
 - No data collection for data's sake
 - Answered questions should result in management action
- Not enough \$\$ to answer all questions, so will need to prioritize the most important
- Provide regional context for sitespecific monitoring
 - Identify mutual beneficial special studies

Oh what to do, what to dooo?

Need for Cooperative Monitoring

- Leverage resources, knowledge and experience
- Answer regional questions and fulfill mandates
- Provide relevant information that can be readily shared
- Provide a platform for more in-depth studies

- Standard tools and monitoring design
- Shared information management.
- Nested design to allow local intensification

Watershed Based Monitoring

- Start with watershed analysis
- Informs development of monitoring questions
- Priority locations
- Opportunities to leverage off existing programs
- Ability to monitor process indicators over time

Regional Monitoring Coalitions

Wet vs Dry Weather Monitoring

California's Stream Ecological Indicators

- Instream Biology
 - California Stream Condition Index (CSCI)
 Algal IBI
- Physical habitat
 - PHAB MMI
 - Hydromodification
- General stream condition

Multiple Indicator Approach

Robust Statewide Monitoring Programs

Algae

Benthic Invertebrates Physical Habitat

CRAM

Why use Biossessment?

Use species composition to measure overall ecological integrity

Integrate effects of different stresses

- ... But ... exact source of stress may be hard to identify
- Provide a measure of fluctuations of environmental conditions over time.
- Relatively inexpensive
- Direct measure of biological endpoint

Diverse Reference Network

Screened > 2400 candidate reference sites Selected 586 sites

Objectives:

Reference pool represents
 CA stream diversity

2. Biological at reference sites is minimally influenced by stress

Reference Sites Cover Key Gradients

Converting Taxa to a "Score"

California Stream Condition Index (CSCI) Part A: Ecological Structure Component (pMMI) Part B: Taxonomic Loss Component (O/E)

- Both components adjust for environmental setting
- CSCI is a simple average of the two scores 19

How does the CSCI Compare to Previous Indices?

Much better reference data set

- Bigger, broader, and more rigorously screened
- More comprehensive assessment of biological integrity
- Statewide applicability, without regionalization
 - Nearly all perennial wadeable streams can be assessed
 - Formal tests of applicability are possible
- More lines of evidence than most indices
- Site-specific expectations means that your site is held to appropriate standards

Benthic Algae IBls

soft-bodied algae (& cyanobacteria)

Why Add Algae to Bioassessment?

- Information complementary to bugs
 - Response to different stressors
 - Strongest responses evident over different ranges of disturbance
- Weight of evidence
- Potential for broader range/flexibility in interpretation of results
 - Applicability on different substrate types

Diagnostic Assessments

Hydromodification Field Screening Tool

- Classify streams by:
 - Likely severity of response
 - Likely direction of response
- Decision trees
 - Clear endpoints very high, high, medium, low
- Simple to apply field metrics
 Does not rely on complex field measures
- Locally calibrated
- Rapid < 1 day in office + 1 day in field</p>

Field Indicators + Empirical Relationships

А

Form 3 Checklist 2: Grade Control

- Grade control is present with spacing <50 m or 2/S_v m
 - No evidence of failure/ineffectiveness, e.g., no headcutting (>30 cm), no active mass wasting (analyst cannot say grade control sufficient if masswasting checklist indicates presence of bank failure), no exposed bridge pilings, no culverts/structures undermined
 - Hard points in serviceable condition at decadal time scale, e.g., no apparent undermining, flanking, failing grout
 - If geologic grade control, rock should be resistant igneous and/or metamorphic; For sedimentary/hardpan to be classified as 'grade control', it should be of demonstrable strength as indicated by field testing such as hammer test/borings and/or inspected by appropriate stakeholder
- B Intermediate to A and C artificial or geologic grade control present but spaced 2/Sv m to 4/Sv m or potential evidence of failure or hardpan of uncertain resistance
- C Grade control absent, spaced >100 m or >4/S_v m, or clear evidence of ineffectiveness

Physical Habitat (PHAB) MMI

Habitat Assessment Field Data Sheet Low Gradient Streams

Stream Name										
Station # Rivermile										
Lat	Long	_								
Storet #										
Form Completed By Habit Parameter I. Epifaunal Greater than 50% of substrate favorable for cover		Date Time AM	PM							
Habit Parameter				_						
1. Epifaunal Substrato/Available Cover	Greater than 50% of substrate favorable for epifannal cointration and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full cointration potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	30 - 50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10 - 30% mix of stable habitat: habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.						
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6							
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.						
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6							
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.						
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6							

PHAB MMI Metrics

Condition Categories

- Riparian condition
- Substrate condition
- Productivity
- Channel equilibrium
- Riparian condition

Candidate Metrics

- Percent Presence of Macroalgae
- Percent Stable Banks
- Percent Fast Water of Reach
- Natural Shelter cover SWAMP
- Mean Mid-Channel Shade
- Canopy cover
 - Riparian Vegetation All 3 Layers
 - CPOM Presence
 - Particle Size Median (d50)
 - Percent Substrate <2 mm</p>

Index under development

California Rapid Assessment Method (CRAM)

Field-based, rapid tool to assess condition

- Applicable to all wetland types, including streams
- Based on readily observable field indicators
- Evaluates broad suite of conditions
- Validated with more intensive measures of condition

CRAM Attributes

CRAM recognizes four attributes of wetland condition

Each attribute is represented by 2-3 metrics, some of which have sub-metrics.

Emerging Indicators for Nonperennial Streams

What About Stress?

Risk Factors

Higher risk: Habitat degradation High nutrients

Lower risk Conventional toxicants

Analysis show correlation, not causation

Working on integrated assessment

Common Data Platforms

Benthic invertebrates, Algae, Chemistry, Toxicity

CRAM, Chemistry, Toxicity, + Project info

Communication

			2	2005	-200	6				
San Diego River Water	shed		Water C	buality Rep	Data	a hutu	aocrit	oria	2005-2006 A	asessmen
EXCELLENT 6000									REATION	FISH EDIBIUT
FAR POOR NA	Ŀ	r	<u> </u>		40404	-W.	4	24		101
SEGMENT	80,007	CHEMISTRY	NUTRIENTS	TORICS	SED MENTS	FLOW	HABITAT	BACTERIA	AESTHETICS	FISH TISS
San Diego River				-						
Cedar Creek		- 104		E Fa	ir to g	ood -	NA	NA.	NA	NA.
Boulder Creek 🤇	Fair	Good	Fair	2			NA	NA.	Excelent	NA.
San Vicente HA		_								
San'Vicente Creek	Poor	Poor	Poor) NA	Wild	fire? T	NA	NA.	Excelent	NA
El Capitan HA	_		_							
Conegos Creek	Fair	Fair	NA.	NA	NA	NA	NA.	NA.	NA	NA.
Choosiate Creek	NA	Poor	Poor	NA	NA	NA	NA	NA.	NA	NA.
Lower San Diego HA										
Los Coches Creek	NA	Poor	- Part	NA	NA	NA	NA	NA.	Context	NA.
San Diego River TW45 3	A.	NA	NA	NA	NA	NA	NA	NA.	NA	NA.
Forrenter Creek	/ NA	Poor	Poor	144	NA	NA	NA	NA.	Excelent	NA.
San Diego River TWK5 2	NA	NA	NA	Ap.	NA	NA	NA	NA	NA	NA.
San Dego River Padre Dam I	NA	Poor	Por	NA	NA	NA	NA	NA.	NA	NA.
San Diego River Padre Gem II	NA	Poor	Poor	NA	NA	NA	NA	NA	NA	NA.
San Diego River Mission Trail	NA	NA	NA	NA		NA	NA	NA	NA	NA.
San Diego River Masion Trail 8	Poor	NA	NA	NA.	T poo	DT NA	NA	NA	NA	NA.
San Dego River TWAS 1	NA	NA	NA	N/A		NA	NA	NA.	NA	NA
Avarado Creek	Poor	Poor	Poor	N	NA	NA	NA	NA	Excelent	NA
San Diego River Fashion V.	Poor	NA	Poor	10A	NA	NA	NA	Poor	NA	NA
San Diego River Mass Load	100	Poor	Page	ANA	NA	NA	NA	NA.	Excelent	NA
-	44	NA	NA.	/ NA	NA	NA	NA	NA.	NA	NA
105	NA	NA	NA /	NA	NA	NA	NA	NA.	NA	NA
	NA	NA	th	NA	NA	NA	NA	NA.	NA	NA.
unu	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
nin i	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.
erene .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Final Thoughts

Questions drive monitoring

True benefits will only be realized over the long-term
 Need long-term implementation mechanisms

Monitoring data contributes to new knowledge
 Data must be made broadly available

Thank You

Eric Stein 714-755-3233 erics@sccwrp.org