Connecting Wetlands Restoration and Soil Conservation to the the Carbon Market and Beyond

> Stephen Crooks Ph.D. Climate Change Services Director ESA PWA

Blue Carbon: The Role of Watershed Stewardship in the Carbon Market

Photo: Lisa Windham-Myers

Bay Area Watershed Network February 21st, 2013, Oakland, CA.

ESA PWA Ecosystems in focus for climate change mitigation

Forest

Peatland

Mangroves

Tidal Marshes

Seagrass

ESA PWA Long-term carbon sequestration and storage

Carbon from plants gather in soil and builds up over thousands of years

Donato *et al.*, 2011 (*Nature Geoscience*); Crooks *et al.*, 2011 (*World Bank*); Murray *et al.*, 2011 (*Duke Report*); Fourqurean *et al.*, 1012 (*Nature Geoscience*); Pendleton *et al.*, 2012 *PlosOne*

Rates of Wetland Loss

X

Ecosystem	Global Extent	Annual Rate	
	(KIII-)	OI LOSS (76)	
Tidal Marsh	400,000	1 - 2	A CARLER OF
Mangrove	160,000	1-2	
Seagrass	300-600,000	1-2	
			AND
June of	finan france	a and a marking and an approximation	
	and we and	intersity of the second s	
1 and the second	A		

.

Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

Linwood Pendleton^{1®}, Daniel C. Donato²*[®], Brian C. Murray¹, Stephen Crooks³, W. Aaron Jenkins¹, Samantha Sifleet⁴, Christopher Craft⁵, James W. Fourqurean⁶, J. Boone Kauffman⁷, Núria Marbà⁸, Patrick Megonigal[®], Emily Pidgeon¹⁰, Dorothee Herr¹¹, David Gordon¹, Alexis Baldera¹²

	Inputs			Results	
Ecosystem	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment+biomass, Mg CO ₂ ha ⁻¹)	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)
Tidal Marsh	2.2-40 (5.1)	1.0-2.0 (1.5)	237-949 (593)	0.02-0.24 (0.06)	0.64-9.7 (2.6)
Mangroves	13.8-15.2 (14.5)	0.7-3.0 (1.9)	373-1492 (933)	0.09-0.45 (0.24)	3.6-18.5 (9.8)
Seagrass	17.7-60 (30)	0.4-2.6 (1.5)	131-522 (326)	0.05-0.33 (0.15)	1.9-13.7 (6.1)
Total	33.7-115.2 (48.9)			0.15-1.02 (0.45)	6.1-41.9 (18.5)
	Company to potional				
Compare to national				Poland J	apan

Table 1. Estimates of carbon released by land-use change in coastal ecosystems globally and associated economic impact.

The Delta

High organic sedimentation Low mineral sedimentation

Once established marshplain is insensitive to mineral sedimentation

Former natural morphology reflected processes set in motion 6000 years

DWR 2007 LIDAR; ESA-PWA 2012

SOURCE:

Bay Delta Science Conference. Figure 1 Elevations and ROAs of Delta-Suisun Marsh Planning Area

Emissions from One Drained Wetland: Sacramento-San Joaquin Delta

Area under agriculture 180,000 ha

Rate of subsidence (in) 1 inch

5 million tCO_2/yr released from Delta

1 GtCO₂ release in c.150 years 4000 years of carbon emitted Equiv. carbon held in 25% of California's forests

Accommodation space: 3 billion m³

ESA PWA Opportunity to link Adaptation and Mitigation

Levee Decisions and Sustainability for the Sacramento-San Joaquin Delta

Robyn Suddeth, Jeff Mount, Jay Lund

Center for Watershed Sciences University of California, Davis

July 13, 2009

Fragile levee system prone to failure.

Levee upgrades expensive, minimal improved reliability.

"...maintaining the current Delta landscape is is unlikely to be economical from a business or land use perspective."

Figure 4. Repair decision using property values plus assets to calculate net present values

Carbon Capture Wetland Farm Bio-Sequestration

Stops peat oxidation and accretes "proto-peat" rapidly

U.S. Geological Survey

Continuously submerged about 1 ft

Low oxygen conditions

Balance between plant growth and reduced decomposition

Average annual <u>soil sequestration</u>: 1 kg C m⁻² yr⁻¹ in soil

Miller et al. 2008, SFEWS

ESA PWA Wetlands Carbon management: The Game Plan

- United Nations Framework Convention on Climate Change
 - Brief national climate change negotiators
 - Identify policy opportunities
 - Engage IPCC
 - International demonstration (e.g. GEF project)

National Government

- Establish science research (e.g. NSF, NOAA)
- Recognize wetlands in national accounting
- Agency awareness and action

Local

- Landscape level accounting
- Establish carbon market opportunities
- Look for synergistic conservation benefits
- Demonstration projects and public awareness

ESA PWA Blue Ribbon Panel: Action Plan

Foundational Issues

Defining Project Types

Eligibility

Quantifying GHG Reductions

Permanence

Regional Case Studies

Managed (Tidal) Freshwater Marsh

Salt Marsh

Large Deltas (e.g. Mississippi)

(Mangroves, seagrasses added)

(Seasonal floodplains)

Findings of the National Blue Ribbon Panel on the Development of a Greenhouse Gas Offset Protocol for Tidal Wetlands Restoration and Management

ACTION PLAN TO GUIDE PROTOCOL DEVELOPMENT

Based on a workshop convened by Restore America's Estuaries and held April 12-13, 2010

Prepared by Restore America's Estuaries, Philip Williams & Associates, Ltd., and Science Applications International Corporation.

August 2010

http://estuaries.org/climate-change.html

Climate Change Negotiations, Cancun: The big break!

Capturing and conserving natural coastal carbon

Building mitigation, advancing adaptation

EN PESA PWA

November 2010

2013 Supplement

to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands

Chapter 4 Coastal Wetlands!

Daniel M. Alongi (Australia) Guangcheng Chen (China) Gail L. Chmura (Canada) Stephen Crooks (USA) Ansarul Karim (Bangladesh) Hillary A. Kennedy (UK) Baowen Liao (China) Guanghui Lin (China) Tiffany Troxler (USA)

Blue Carbon Initiative

ESA PWA Blue Carbon Open Symposium

- European Parliament Intergroup meeting
- High attendance from different EU stakeholders, including MEPs and Directors EU Commission - DGs
- Representatives from the Blue Carbon Science Working Group Kauffman, Fourqurean and Crooks.
- Awareness raising, discussion, networking

New Working Groups

- International Blue Carbon Working Groups
- <u>US Federal Interagency BC Group</u>
- World Bank Blue Carbon WG
- Other Nations
 - Indonesia, Costa Rica, Abu Dhabi, Australia

A Global Benchmark for Carbon

Wetlands Restoration and Conservation (WRC)

Adopted into Standard Oct 4, 2012

http://v-c-s.org/wetlands_restoration_conservation

Other Categories:

- •Afforestation, Reforestation, Revegetation (ARR)
- •Agricultural Land Management (ALM)
- •Improved Forest Management IFM)

•Reduced Emissions from Deforestation and Degradation (REDD)

From Standard to Project

Standards for project activities

- General requirements and guidance on GHG accounting
- Procedures for validation and verification
- •Registry and clearing house for 'carbon credits'

Methodologies are step-by-step explanations of how emission reductions or removals are to be estimated in line with the requirements following accepted scientific good practice.

Project description or design documents provide Information on how a specific project complies with the requirements and applies the methodology

Characteristics of Good Projects

Size

• There are economies of scale that accompany large projects

- •Reduced costs of implementation
- •Reduced cost of monitoring, reporting and verification (MRV)
- •However, possible to aggregate multiple small projects

Low complexity

Incorporating Ch4 into accounting adds costFor tidal marshes need to project forward response to SLR

Baseline emissions

Reducing or preventing ongoing emissions from organic soils is creditableRestoration is additional

ESA PWA

Next Steps - Demonstration

- Landscape GHG assessment
 - Baseline GHG budgets
 - With management GHG budgets
 - Merger with climate change adaptation
- Feasibility and demonstration
 - Sacramento San Joaquin Delta
 - Tidal marshes
 - Seasonal Floodplains
- Stacking of credits

Stephen Crooks Climate Change Services Director ESA PWA +1 415 272 3916 <u>SCrooks@esassoc.com</u>

